11 research outputs found

    Overview of Passive Light Emitting Diode Driver Circuits for Street Lighting

    Get PDF
    This paper describes the overview and comparison of various passive Light Emitting Diode (LED) driver circuits employed for street lighting applications. Passive LED driver circuits are constructed with diodes and capacitors without using any power electronic semiconductor switches which in turn eliminates the secondary supply unit for control circuits and controllers. Passive LED driver circuits are simple in construction, low cost, less maintenance and control free. 50 W LED driver circuit is identified for performance comparison and simulations are performed in matlab- simulink to get an overview of different passive LED driver circuits. The most predominant parameters such as efficiency and total harmonic distortion are compared to identify the suitiblity of the driver circuits for various applications

    Overview of Passive Light Emitting Diode Driver Circuits for Street Lighting

    Full text link
    This paper describes the overview and comparison of various passive Light Emitting Diode (LED) driver circuits employed for street lighting applications. Passive LED driver circuits are constructed with diodes and capacitors without using any power electronic semiconductor switches which in turn eliminates the secondary supply unit for control circuits and controllers. Passive LED driver circuits are simple in construction, low cost, less maintenance and control free. 50 W LED driver circuit is identified for performance comparison and simulations are performed in matlab- simulink to get an overview of different passive LED driver circuits. The most predominant parameters such as efficiency and total harmonic distortion are compared to identify the suitiblity of the driver circuits for various applications

    Simulation of Inverter Fed Induction Motor Drive with LabVIEW

    No full text
    This paper describes a software approach for modeling inverter fed induction motor drive using Laboratory Virtual Instrument Engineering Workbench (LabVIEW). The reason behind the selection of LabVIEW software is because of its strong graphical interface, flexibility of its programming language combined with built-in tools designed specifically for test, measurement and control. LabVIEW is generally used in most of the applications for data acquisition, test and control. In this paper, inverter and induction motor are modeled using LabVIEW toolkits. Simulation results are presented and are validated

    Simulation of Inverter Fed Induction Motor Drive with Labview

    No full text
    This paper describes a software approach for modeling inverter fed induction motor drive using Laboratory Virtual Instrument Engineering Workbench (LabVIEW). The reason behind the selection of LabVIEW software is because of its strong graphical interface, flexibility of its programming language combined with built-in tools designed specifically for test, measurement and control. LabVIEW is generally used in most of the applications for data acquisition, test and control. In this paper, inverter and induction motor are modeled using LabVIEW toolkits. Simulation results are presented and are validated
    corecore